Chapter 8: Water

Water (H_2O) is essential for life and is often called the **universal solvent** because it dissolves many substances.

1. Dissolution of Salts in Water

- When salts dissolve in water, they break into **ions** and spread throughout the liquid.
- Example: Sodium chloride (NaCl) dissolving in water

$$NaCl \rightarrow Na^+ + Cl^-$$

2. Water - The Universal Solvent

- Water dissolves most solids, liquids, and gases, making it the universal solvent.
- This property helps in biological processes, digestion, and industrial applications.

3. Solutions, Suspensions, and Colloids

Type	Definition	Example
Solution	A homogeneous mixture where solute is completely dissolved in	Sugar in
	solvent.	water
Suspension	A heterogeneous mixture where solid particles do not dissolve	Sand in
	and settle down over time.	water
Colloid	A mixture where tiny particles are evenly spread but do not settle	Milk, fog
	down.	

4. Types of Solutions

Type	Definition
Unsaturated Solution	Can dissolve more solute at a given temperature.
Saturated Solution	Cannot dissolve any more solute at that temperature.
Supersaturated	Contains more dissolved solute than it normally can at a given
Solution	temperature (unstable).

5. Water of Crystallization

- Some salts contain water molecules in their solid structure, known as water of crystallization.
- Example: Copper sulfate (CuSO₄·5H₂O) is blue due to water of crystallization.
- On heating, it loses water and turns white:

$$CuSO_4 \cdot 5H_2O \xrightarrow{heat} CuSO_4 + 5H_2O$$

6. Hydrated and Anhydrous Substances, Hygroscopic Substances

- **Hydrated Substances:** Contain water of crystallization. (e.g., CuSO₄·5H₂O)
- Anhydrous Substances: Do not contain water. (e.g., CuSO₄ without water is white)
- **Hygroscopic Substances:** Absorb moisture from the air. (e.g., Silica gel, concentrated sulfuric acid)

7. Reactivity of Metals with Water

Metal	Reaction with Cold Water	Reaction with Hot Water	Reaction with Steam
Sodium (Na)	Reacts violently, forms NaOH + H ₂		-
Magnesium (Mg)	No reaction	Forms Mg(OH) ₂ + H ₂	Forms MgO + H ₂
Iron (Fe)	No reaction	No reaction	Forms Fe ₃ O ₄ + H ₂

- Highly reactive metals like Na & K react explosively with water.
- Less reactive metals like Fe react only with steam.

8. Hard and Soft Water

Type	Definition	Disadvantages
Soft	Forms lather easily with soap.	No disadvantages.
Water		
Hard	Contains dissolved Ca ²⁺ and Mg ²⁺ ions, does	Wastes soap, forms scales in pipes
Water	not form lather easily.	and boilers.

9. Methods to Soften Hard Water

- **⊘** Boiling: Removes temporary hardness by precipitating CaCO₃ & Mg(OH)₂.
- \checkmark Washing Soda (Na₂CO₃): Converts Ca²⁺ and Mg²⁺ into insoluble carbonates.
- \checkmark Ion Exchange Method: Uses resins to replace Ca^{2+}/Mg^{2+} with Na^{+} (advanced method).

